Whereas many partial solutions and sketches for the odd-numbered exercises appear in the book, the Student Solutions Manual, written by the author, has comprehensive solutions for all odd-numbered exercises and large number of even-numbered exercises. This Manual also offers many alternative solutions to those appearing in the text. These will provide the student with a better understanding of the material.
This is the only available student solutions manual prepared by the author of Contemporary Abstract Algebra, Tenth Edition and is designed to supplement that text.
Table of Contents
Integers and Equivalence Relations
0. Preliminaries
Groups
1. Introduction to Groups
2. Groups
3. Finite Groups; Subgroups
4. Cyclic Groups
5. Permutation Groups
6. Isomorphisms
7. Cosets and Lagrange’s Theorem
8. External Direct Products
9. Normal Subgroups and Factor Groups
10. Group Homomorphisms
11. Fundamental Theorem of Finite Abelian Groups
Rings
12. Introduction to Rings
13. Integral Domains
14. Ideals and Factor Rings
15. Ring Homomorphisms
16. Polynomial Rings
17. Factorization of Polynomials
18. Divisibility in Integral Domains Fields
Fields
19. Extension Fields
20. Algebraic Extensions
21. Finite Fields
22. Geometric Constructions
Special Topics
23. Sylow Theorems
24. Finite Simple Groups
25. Generators and Relations
26. Symmetry Groups
27. Symmetry and Counting
28. Cayley Digraphs of Groups
29. Introduction to Algebraic Coding Theory
30. An Introduction to Galois Theory
31. Cyclotomic Extensions
Abstract Algebra, 3rd Edition by David S. Dummit, Richard M. Foote
This revision of Dummit and Foote’s widely acclaimed introduction to abstract algebra helps students experience the power and beauty that develops from the rich interplay between different areas of mathematics.
The book carefully develops the theory of different algebraic structures, beginning from basic definitions to some in-depth results, using numerous examples and exercises to aid the student’s understanding. With this approach, students gain an appreciation for how mathematical structures and their interplay lead to powerful results and insights in a number of different settings.
The text is designed for a full-year introduction to abstract algebra at the advanced undergraduate or graduate level, but contains substantially more material than would normally be covered in one year. Portions of the book may also be used for various one-semester topics courses in advanced algebra, each of which would provide a solid background for a follow-up course delving more deeply into one of many possible areas: algebraic number theory, algebraic topology, algebraic geometry, representation theory, Lie groups, etc.
Basic Modern Algebra with Applications 2014th Edition, by Mahima Ranjan Adhikari (Author), Avishek Adhikari (Author) || Full PDF Download
The book is primarily intended as a textbook on modern algebra for undergraduate mathematics students. It is also useful for those who are interested in supplementary reading at a higher level. The text is designed in such a way that it encourages independent thinking and motivates students towards further study. The book covers all major topics in group, ring, vector space and module theory that are usually contained in a standard modern algebra text.
In addition, it studies semigroup, group action, Hopf’s group, topological groups and Lie groups with their actions, applications of ring theory to algebraic geometry, and defines Zariski topology, as well as applications of module theory to structure theory of rings and homological algebra. Algebraic aspects of classical number theory and algebraic number theory are also discussed with an eye to developing modern cryptography. Topics on applications to algebraic topology, category theory, algebraic geometry, algebraic number theory, cryptography and theoretical computer science interlink the subject with different areas. Each chapter discusses individual topics, starting from the basics, with the help of illustrative examples. This comprehensive text with a broad variety of concepts, applications, examples, exercises and historical notes represents a valuable and unique resource.
Contemporary Abstract Algebra-Cengage Learning_Brooks Cole_Cengage (2017) by Joseph A Gallian
CONTEMPORARY ABSTRACT ALGEBRA, NINTH EDITION is primarily intended for an abstract algebra course whose main purpose is to enable students to do computations and write proofs. Gallian’s text stresses the importance of obtaining a solid introduction to the traditional topics of abstract algebra, while at the same time presenting it as a contemporary and very much an active subject which is currently being used by working physicists, chemists, and computer scientists.
Schaum’s Outline of Intermediate Algebra, Third Edition by Ray Steege, Kerry Bailey || Full PDF
Tough Test Questions? Missed Lectures? Not Enough Time?
Fortunately, there’s Schaum’s.
More than 40 million students have trusted Schaum’s to help them succeed in the classroom and on exams. Schaum’s is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, sovled problems, and practice exercises to test your skills.
This Schaum’s Outline gives you:
• 800 supplemental problems to reinforce knowledge
• Concise exaplanations of all intermediate algebra concepts
• Information on polynomials, rational expressions, exponents, roots, radicals, sequences, series and the bionomical theorem
• New end of chapter quiz for every chapter
• New cumulative test
• New “Alternate Method” for factoring
• New appendix on the “Frentheway Method” including the proof and examples
• Support for all major textbooks for courses in Intermediate Algebra
Schaum’s reinforces the main concepts required in your course and offers hundreds of practice questions to help you suceed. Use Schaum’s to shorten your study time-and get your best test scores!
Schaum’s Outlines – Problem solved.